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Abstract 

Two of the most important experimental variables in the 
search for appropriate crystallization conditions are the 
initial concentrations of macromolecule and crystalliz- 
ing agent. Previously, it has been suggested that the 
coordinate transformation { [crystallizing agent], [macro- 
molecule] } ---, { [macromolecule] x [crystallizing agent], 
[macromolecule]} be used to sample crystal growth 
conditions. Here, it is shown that this transformation 
is a special case of a generally applicable transfor- 
mation. The initial supersaturation can be represented 
locally by a rectangular hyperbola involving multiples 
of the product of macromolecule and crystallizing agent 
concentrations. The coordinate system for the solubility 
diagram, ([crystallizing agent] versus [macromolecule]), 
can thus be transformed analytically to an alternative 
coordinate system in which the independent variables 
are local approximations to the initial supersaturation 
and the reservoir of soluble macromolecule available 
to feed a growing seed. In the new coordinate system 
the 'nucleation zone' is 'orthogonalized', so it can be 
sampled efficiently on a rectangular grid, with greater 
assurance that experiments will give rise to crystals. 
Moreover, since these new coordinate directions seg- 
regate fundamental effects on nucleation from effects 
on growth, using them in experimental designs should 
improve data analysis for response surface experiments. 

1. Introduction 

Many crystal growth processes involve a single tar- 
geted set of macromolecular and crystallizing agent 
concentrations to be achieved by vapor-phase or dialysis 
equilibration. Different choices for these targeted values 
can cause considerable variation in crystal growth, so 
they are critical parameters for optimization. 

In our efforts to fit quadratic polynomial models 
to a sample of experimental measurements of crystal 
growth properties chosen for that purpose (Carter & 
Yin, 1994), we found that expressly sampling differ- 
ent values of the supersaturation improved the overall 
performance of these 'response surface' experiments. 
This paper presents a conceptual justification for our use 
of the product, [macromolecule] x [crystallizing agent], 
to represent the supersaturation, together with some of 

the practical advantages of transforming the solubility 
diagram coordinates in this manner. 

2. Solubility phase diagrams and the nucleation zone 

The solubility or phase diagram representing the 
[macromolecule] × [crystallizing agent] plane, Fig. l(a), 
is central to the study of macromolecular crystal growth. 
Considerable evidence exists to show that changing the 
initial concentrations of either species can substantially 
alter a crystallogenesis experiment (for example, see 
Feher & Kam, 1985; Ataka & Tanaka, 1986; Ataka 
& Michihiko, 1988; Scarborough, 1994; Thibault, 
Langowski & Leberman, 1992). The two concentrations 
impact crystal growth via their effects on nucleation and 
growth kinetics (Rosenberger & Meehan, 1988). They 
can also influence, and are sensitive to, equilibration 
rates (Lufl, Arakali, Kirisits, Kalenik, Wawrzak, Cody, 
Pangborn & DeTitta, 1994; Lufl & DeTitta, 1996). 
The temporal evolution of a system's position on 
the solubility diagram therefore represents succinctly 
the essential thermodynamic and kinetic influences on 
crystal growth (see, for example, Ducruix & Gieg6, 
1992). 

Many authors (Kam, Shore & Feher, 1978; Boistelle 
& Astier, 1988; Ducruix & Ribs-Kautt, 1990; Mikol & 
Gieg6, 1992; Ribs-Kautt & Ducruix, 1992) subdivide 
the region above the solubility curve into three 'zones'. 
Points that spontaneously give rise to crystals lie inside 
the shaded region in Fig. l(a). Between this 'nucleation 
zone' and the solubility curve the concentration of 
macromolecule is too low to nucleate crystal growth. 
The solution is nevertheless supersaturated and hence, 
'metastable' with respect to growth on existing nuclei. 
Above the nucleation zone, at very high supersaturations, 
nucleation is so rapid that only microcrystalline or 
amorphous precipitation occurs. 

2.1. Sampling the nucleation zone 

Once conditions have been found that stabilize or- 
dered lattice interactions, the search for optimal crystal- 
lization conditions can often be cast in terms of finding 
appropriate initial and final positions relative to the 
nucleation zone. Unless seeding is used to circumvent 
the need for in situ nucleation, this is the region that must 
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be sampled in the design for an optimization experi- 
ment. 

In view of its importance, surprisingly little attention 
has focused on how to sample the 'nucleation zone' 
experimentally. Most approaches to sampling rely on a 
rudimentary rectangular grid (Cox & Weber, 1988). We 
found this approach to be inadequate when we began the 
routine use of response surface analysis (Box, Hunter & 
Hunter, 1978; Carter & Yin, 1994) to define optimum 
conditions for growing crystals for X-ray diffraction 
analysis. Response surface experiments (Box, Hunter 
& Hunter, 1978) produce a functional representation, 
or surface, to represent the behavior of a system, i.e. 
its response, as input conditions change. They rely on 
having results from all or most of the experiments in 
a carefully chosen design (Hardin & Sloane, 1993) and 
fitting them to a quadratic polynomial model. 

Response surface designs emphasize the problematic 
nature of sampling the irregularly curved nucleation 
zone. An essential feature of the design matrices in 
such experiments is that, to ensure the most accurate 
parameters, most experimental sampling points are set 
as far as practical from the suspected optimum. That 
strategy defines as closely as possible the curvature 
of the response within the sampled domain of the 
surface. However, it also heightens the risk that sampling 
points will lie outside the nucleation zone (see the 
sampling points in Fig. l(a); the black crosses, or 
roughly half of them, will not produce crystals). From a 
practical standpoint, it is therefore critical to distribute 
experiments within the sausage-shaped figure in Fig. 
l(a) so that each one will actually produce crystals. 
Variation of the two concentrations on a rectangular grid 
in the traditional representation will inevitably waste 

experiments, as illustrated by the black crosses outside 
the nucleation zone in Fig. l(a). 

2.2. Ridge analysis and the choice of independent 
variables 

Our first response surfaces revealed the sampling 
problem in a second rather different light. It is always 
useful, if  possible, to choose variables with linearly 
independent effects on crystallogenesis. Combinations of 
variables for which this is not true give rise to 'ridges', 
along which the surface achieves the same maximum 
value, rather than to unique optima. 

Although the response surfaces themselves are multi- 
dimensional functions, two-dimensional 'slices' can be 
represented graphically by choosing constant values for 
all but two of the independent variables, and plotting 
the resulting values of the function. This representation 
is called a 'level surface', where 'level'  refers to the 
constant values of the remaining variables. A recurrent 
feature of our early response surfaces was a ridge in 
one or more of the level surfaces involving [protein] at 
constant [crystallizing agent] (Fig. 2). In these plots, the 
optimum value of the dependent variable, plotted along 
the z axis, has a more or less constant value for different 
combinations of the two independent variables. 

The significance of ridges can be appreciated by 
transforming to 'canonical coordinates' in which one of 
the new axes lies along the ridge (Box, Hunter & Hunter, 
1978). This procedure demonstrates that the two variable 
dimensions giving rise to a ridge actually comprise a 
single, more fundamental dimension, and are therefore, 
in a sense, redundant. The ridges shown in Fig. 2 proba- 
bly arose because macromolecular solubility at constant 
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Fig. 1. Coordinate transformation facilitating sampling in the problematic [crystallizing agent] x [macromolecule] plane. (a) Here, the solubility 

curve is approximated by a rectangular hyperbola in the neighborhood of the circled point, where crystals are suspected to be optimal. In order 
for experiments in a response surface design to produce scores, they must lie inside the curved, shaded region. Sampling on a rectangular grid 
in this coordinate system places only the white crosses inside the 'nucleation zone'. (b) The same region re-plotted in a new coordinate system, 
with axes [macromolecule] x [crystallizing agent] and [macromolecule]. There is a one-to-one mapping of experimental points between the 
two coordinate systems, but in (b), the nucleation zone appears as a rectangle, so judicious sampling on a rectangular grid places all experiments 
inside the nucleation zone. The two coordinate directions in (b) also approximate the supersaturation and reservoir size, respectively (see text). 
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ionic strength is temperature dependent (Jakoby, 1968). 
Hence, the same initial supersaturation can be achieved 
at a given salt concentration by many different combina- 
tions of [macromolecule] and temperature. We therefore 
suspected that the fundamental variable whose optimum 
was achieved at the top of the ridges was in fact 
supersaturation. 

The presence of ridges in level-surface plots like 
those in Fig. 2 led us, in this manner, to recognize that 
solubility might be approximated by a rectangular hyper- 
bola, Cs -~ a constant/[crystallizing agent]. The product, 
[macromolecule] x [crystallizing agent], might therefore 
behave approximately like the initial supersaturation and 
serve as a new independent variable (Carter & Yin, 
1994). 

The one-to-one coordinate transformation, 

{x,y} = { [crystallizing agent],[macromolecule] } 

{x',y' } = {[macromolecule] 

x [crystallizing agent],[macromolecule] }, 

illustrated in Fig. l(b) has two interesting consequences. 
First, the new coordinate directions represent the funda- 
mental parameters that act on nucleation and subsequent 
crystal growth, respectively. Second, experiments can 
be distributed on the rectangular representation of the 
nucleation zone in Fig. l(b) according to a simple 
two-dimensional grid, compatible with Hardin-Sloane 
response surface design matrices (Hardin & Sloane, 
1993), thereby minimizing the risk of experiments not 
producing scores because they fell outside the nucleation 
zone. Our initial success with this procedure (Carter & 
Yin, 1994) motivated the following demonstration of its 
significance and generality. 

2.3. Basis vectors for the geometric resolution of 
nucleation and growth 

The obvious remark that the nucleation zone is two 
dimensional has non-trivial practical and conceptual 

implications. Experiments targeted to different parts of 
the nucleation zone produce different kinds of crystals. 
We have noted, in particular (Carter & Yin, 1994), that 
certain regions of the nucleation zone correspond to 
'stationary points' where crystals grow to an optimal 
volume, with optimal isometry, and with a minimum 
of secondary nucleation. Neither the existence nor the 
location of such stationary points are obvious without 
careful experimentation. In one example, the stationary 
point proved to be at protein and precipitant concentra- 
tions previously thought to lie in the precipitation zone. 
Moreover, moving away from such stationary points 
by changing either the macromolecular or crystallizing 
agent concentrations can lead to smaller, badly formed 
and multiple crystals. Thus, finding stationary points 
involves at least a two-dimensional search. 

What is the physical significance of this two dimen- 
sionality? Qualitatively, crystal growth occurs within 
the nucleation zone because the macromolecular con- 
centration, C7, exceeds its equilibrium solubility, Cs, 
sufficiently that either homogeneous nucleation of crys- 
tal growth or heterogeneous nucleation on contaminating 
surfaces occurs at a reasonable rate (Boistelle & Astier, 
1988; Weber, 1991). Once formed, however, a seed 
can be nourished to different extents, depending on the 
reservoir of supersaturated protein. The supersaturation 
and reservoir represent the two fundamental dimensions 
of the nucleation zone. 

Quantitatively, this two dimensionality of the nucle- 
ation zone is rooted in a potentially confusing mathemat- 
ical curiosity: the linear independence of the different 
formulations of the supersaturation. Supersaturation is 
alternatively defined by the ratio, C7/Cs, by the reservoir 
itself, (Cr-Cs), or by the ratio of the reservoir to 
the solubility, (C7-Cs)/Cs, (Boistelle & Astier, 1988; 
Weber, 1991 ). 

The supersaturation ratio is a unitless intensive quan- 
tity related to the differential chemical potential of 
a supersaturated solution, A#=kBTln(CT/Cs.). At low 
supersaturation ratios, < 0.15, the logarithm can be ap- 
proximated by the third representation, (C7--Cs)/Cs. On 
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Fig. 2. Level surfaces (Carter & Yin, 1994) for different response surfaces based on data for tryptophanyl-tRNA synthetase crystals and 

illustrating ridges involving the [macromolecule]. Scores, Qobs. were based on a quality scale introduced by Carter & Carter (1979). (a) and 
(b) Level surfaces for triclinic crystals of ligand-free enzyrne. (c) Level surface for the tetragonal form grown with ATP and tryptophan. 
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the other hand, the concentration difference, (CT-Cs), 
has the units of concentration. Although these represen- 
tations are widely believed to be interconvertable, they 
are not. In fact, they can be seen to be linearly indepen- 
dent vectors that span the nucleation zone in Fig l(a). 
Supersaturation increases along a direction perpendicular 
to the solubility curve, while the reservoir is parallel 
to the y axis. As we shall see, they form natural basis 
vectors for the nucleation zone, the former determining 
the nucleation rate and the latter the subsequent growth 
rate onto a nucleus. 

2.3.1. Nucleation. The activation free energy, 
and hence the rate of nucleation, depend on the 
supersaturation ratio, [macromolecule~vot~l)] + 
[macromolecule~Equilibrium~] = Cr/Cs. This ratio governs 
nucleation kinetics via a power law characteristic of 
multimolecular chemical reactions, rate cx (Cr/Cs) ~, 
where u represents the number of molecules in the 
critical nucleus (Hofrichter, Ross & Eaton, 1974, 1976; 
Feher & Kam, 1985; Ataka & Tanaka, 1986). 

A potential source of confusion is the appar- 
ent discrepancy between the power law expres- 
sion and that found in physical texts on crystal 
growth (Mutaftschiev, 1993), which give the nu- 
cleation rate as J=ACrexp{-B/[ ln(Cr/Cs)]  2}. In 
fact, the two expressions are alternative deriva- 
tions based on Gibbs' capillarity approximation, 
AG* = -(V/f~)kt~T[ln(CT/Cs)] + S% where V is the 
volume of the nucleus, S is its surface area, 7 is the 
free energy required to create a unit area of surface 
interface, and ~ is the volume of a molecule in the 
interior of the nucleus (Boistelle & Astier, 1988). The 
power law dependence arises from the fact that V/f~ 
is u, the number of molecules inside the nucleus, so 
AG*/k~T= ~/ln(Cr/Cs) + S'y/keT. 

The alternative expression, AG* =-B/[ln(CT/Cs)] 2, 
results from assuming a spherical nucleus, 
solving for and substituting the critical radius, 
r*=(2~'y)/[kt~Tln(CT/Cs)]. The two expressions are 
therefore equivalent if the critical radius is constant with 
respect to supersaturation, which is approximately true 
for several common systems (Hofrichter, Ross & Eaton, 
1974, 1976; Ataka & Tanaka, 1986). The expression 
favored by physicists accomodates the variation 
of critical radius with supersaturation. However, it 
obscures the simple and chemically intuitive power law 
dependence of the nucleation rate on the supersaturation 
ratio and the number of subunits in the critical nucleus, 
without suggesting any compensating physical intuition. 

The rate at which a supersaturated solution will gener- 
ate nuclei is approximately constant along curves parallel 
to the solubility curve and within the nucleation zone. 
Moreover, this functional dependence is the same for 
both homogeneous and heterogeneous nucleation, the 
only difference being that the presence of heterogeneous 
nucleants lowers the threshold supersaturation at which 
nucleation occurs (Boistelle & Astier, 1988). 

2.3.2. Growth. Once formed, a nucleus grows by an 
accumulation of soluble particles (monomers or aggre- 
gates) that is governed in part by their rates of diffusion 
(Smoluchowski, 1917) and in part by the kinetics of 
adsorption to the crystal surface (Rosenberger, Muschol, 
Thomas & Vekilov, 1996). The solution in the immediate 
vicinity of a growing crystal is in equilibrium with 
it, and therefore has a macromolecular concentration 
given by the solubility. Far away, the macromolecular 
concentration is higher, and initially equal to CT. Dif- 
fusion toward the growing crystal is therefore driven 
by the gradient, which, upon the initial nucleation, is 
given by the concentration difference, (CT-Cs). The 
extent of growth may also be determined largely by 
the concentration difference, which also represents the 
available reservoir of supersaturated protein to add to a 
growing crystal. This reservoir can change by orders of 
magnitude for experiments performed at the same su- 
persaturation, but at different pH values or crystallizing 
agent concentrations (Boistelle & Astier, 1988). 

2.4. An intuitively satisfying local coordinate system 

To summarize the argument thus far, we can capture 
the essential two dimensionality of the nucleation zone 
by choosing local basis vectors related directly to deter- 
minants of nucleation and growth. The two alternative 
definitions of supersaturation have distinct effects on 
crystal growth and provide natural basis vectors for 
resolving nucleation from subsequent growth. In this 
context, it seems preferable to reserve 'supersaturation' 
for the ratio, CT/Cs, in order to preserve the distinction 
between its effect on the activation free energy for 
nucleation and use another term, 'reservoir', to denote 
(CT-Cs), whose impact is largely on growth. 

Such a coordinate system cannot be applied globally. 
A pre-exponential contribution to the initiation rate law 
is proportional to the total macromolecular concentra- 
tion, and the size of the critical nucleus may depend 
on the supersaturation. So the nucleation rate is not 
exactly constant for each supersaturation, but increases at 
higher solubilities (Boistelle & Astier, 1988). Moreover, 
specific ion-pairing interactions (Ri~s-Kautt & Ducruix, 
1991) can occur with the macromolecule, so the species 
that crystallize and hence their response surfaces, may 
change as ionic strength is increased. However, near 
a suspected optimum it is possible to transform the 
conventional coordinates of the solubility diagram to 
represent instead the parameters that govern nucleation 
and growth, giving an intuitively satisfying local coor- 
dinate system. 

3. A local approximation to supersaturation 

How equivalent is the product, [crystallizing 
agent] x [macromolecule] to supersaturation? There 
is of course a heuristic analogy between this expression 
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and that for the solubility-product constant in inorganic 
chemistry (Nernst, 1889). In that case, supersaturation 
formally corresponds to stoichiometric combinations 
of anion and cation concentrations in excess of the 
solubility product. Stoichiometric equivalence of 
macromolecule and crystallizing agent is unlikely in 
macromolecular crystals, but this analogy suggests that 
values of [crystallizing agent] × [macromolecule] in 
supersaturated macromolecular solutions bear a similar 
relation to their solubility curves. 

For a single precipitant, solubility, Cs, is often de- 
scribed by the empirical Cohn-Green formula (Arakawa 
& Timasheff, 1986), 

lnCs =/~ - Ks .m  

Cs = exp(/t - Ks..m) = A e x p ( - K s . m ) ,  (I) 

where/4 and Ks- are constants, m represents [crystallizing 
agent], and A = exp((~) represents the limiting value of 
Cs at m = 0. This classical expression for the solubility 
curve as an exponential decay is semi-empirical; it arises 
from the thermodynamic dependence of the chemical 
potential of the macromolecule, i.e., the logarithm of 
its concentration or activity, on the concentration of the 
crystallizing agent. Experimental systems deviate to a 
greater or lesser extent from this expected behavior, so 
in general this expression, too, is only valid locally. Our 
motivation was to capture this exponential decay behav- 
ior in an alternative functional form more amenable to 
experimental design requirements. 

We seek a locally equivalent expression with the 
functional form of a rectangular hyperbola, 

Cs = Co/(m - m,,), (2) 

where G~ and m,, are constants providing, respectively, 
the multiplicative factor and translation necessary for 
the two functions to intersect, with the same slope, at 
the arbitrary point, (xo = mo, y0 = Cs.o). Equating (1) 
and (2) and their first derivatives provides simultaneous 
equations for Co and m,,, giving, 

Co = (A /Ks )exp ( -Ksmo)  and m,, = m o -  ( l /Ks) .  (3) 

The arbitrary point on the solubility curve, around which 
the approximation is centered, is, (xo = mo = [crystal- 
lizing agent]0, Y0 = Cs.o = CoKs). These relationships 
are illustrated in Fig. 3(a) for a simulated case and in 
Fig. 3(b) for a published solubility curve for lysozyme 
(Ducruix & Ri6s-Kautt, 1990). 

Values have been tabulated for Ks for a number of 
crystallizing agents (Arakawa & Timasheff, 1986), and 
an estimate for the maximum macromolecular solubility, 
A, is usually available from experience during purifi- 
cation or elsewhere. (2) can therefore be used, in the 
neighborhood of the suspected optimum ([crystallizing 

agent] = m0), to represent the supersaturation by, 

S = [macromolecule] /Cs 

= ( [macromolecu le] /GO(m - m,, ). (4) 

The same approximate form can be used for curves of 
constant supersaturation, passing through multiples of 
CoKs. 
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Fig. 3. The h)cal hyperbolic approximation to the solubility curve. (a) 

The rectangular hyperbola, y = I/x is scaled by Co and translated 
along x by -Xr,. such that both v and v' agree with the solubility 
curve at the point, (.r,, Cs.o). (b) An example approximating 
solubility data for lysozyme in Ri~s-Kautt & Ducruix (1992). The 
approximation is centered at the point, x0 = 0.5 M, Cs,o = 1.64 raM', 
the translation, xr, = 1 / K S = 0 . 2 0 . 2 7 5 ,  and the constant, C o =0.453. 
The lack of fit results from the fact that the lysozyme data do 
not obey a single exponential relationship, and the fit was selected 
to represent a range of salt concentrations spanning the bimodal 
lysozyme data. 
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The local approximation to Cs also provides an ap- 
proximation to the reservoir, 

J-~ = C T  --  [ Co/(m - m~,)] 

= [macromolecule] 

- { Gj/([crystallizing agent] - m, r) }. (5) 

These local approximations lead directly to the gen- 
eral coordinate transformation, {[crystallizing agent], 
[macromolecule] } ---, { S, R }. The special case illustrated 
in Fig. l(b), where mr << m, [or mo ~- (1~Ks)], obtains in 
the neighborhood of the concentration of crystallizing 
agent required to reduce the solubility to exp(-1)= 0.37 
of its value in buffer, and is thus not unreasonable for 
a crystal growth experiment. Under these conditions 
the approximation reduces to the expression proposed 
originally (Carter & Yin, 1994), 

S = ([macromolecule] [crystallizing agent])/Gj, 

= [macromolecule]- (Gj/[crystallizing agent]). (6) 

The increasing use of binary mixtures of crystallizing 
agents, such as a salt and a nonionic polymer (Jancarik & 
Kim, 1991), raises the question of how to generalize (4). 
For such cases one can use (4) to express independent 
hyperbolic approximations for each crystallizing reagent. 
An alternative model for supersaturation may be approx- 
imated by generalizing the solubility formula. Assuming 
to a first approximation that several crystallizing agents 

n 
= K, 'M, gives, act independently, i.e. that lnCs / -~--]~i--i i 9 

$--  [macromolecule]. 1~I exp(K~-MJ0 
i = 1  

'~ [macromolecule]. ~ (1 + KI.M~). (7) 
i = 1  

Use of these approximations requires a knowledge 
of the coefficients, K~. The best available compilation 
of these parameters (Arakawa & Timasheff, 1986) sug- 
gests that for salts, they depend somewhat on both the 
nature of the protein and the solution pH. Both effects 
probably relate to differences in net charge (Carbonnaux, 
Rirs-Kautt & Ducruix, 1995). Coefficients for different 
molecular weights of polyethylene glycol appear to 
satisfy a linear relationship: Ks -- 0.017 × MrPEG-5.28,  
r -=  0.97, for data from several different proteins. This 
relationship, obtained from Table III of Arakawa & 
Timasheff (1986), indicates that for molal concentrations 
of all crystallizing agents, the salting-out effectiveness of 
low molecular weight PEG reagents (PEG 200 and 400) 
is comparable to that of salts like NaC1 and NaCH3COO, 
for which Ks ~-10, whereas that of higher polymers 
(PEG 6000 and 8000) can be more than an order of 
magnitude greater: Ks" ~-100. Further study of these 
relationships and careful measurement of more Ks- values 
is certainly warranted. 

4. I m p l e m e n t a t i o n  

Although the variables, S and R seem unfamiliar 
at first, designing experiments using them is greatly 
facilitated by the use of spreadsheets, programmed 
to carry out the necessary algebra on a set of 
input parameters and produce a description for each 
experiment. EXCEL spreadsheets programmed for 
Hardin-Sloane response-surface designs involving four 
and five variables are available from the author at 
carter@med.unc.edu or via the World Wide Web at 
URL http://russell.med.unc.edu/~carter/designs. 

Response surface experiments using these and other 
variables can be carried out in a variety of different situa- 
tions, including dialysis, vapor diffusion, and microbatch 
equilibrations. In cases where stationary points can be 
identified that correspond to optima, their coordinates 
provide recipes for improved and more reproducible 
crystal growth, as well as credible evidence for poten- 
tially interesting synergistic and non-linear effects. 

5. C o n c l u s i o n s  

Producing appropriate crystals for structure determi- 
nation often requires both initial screening (Carter & 
Carter, 1979; Carter, Baldwin & Frick, 1988; Carter, 
1990, 1992; Jancarik & Kim, 1991; Doudna, Grosshans, 
Gooding & Kundrot, 1993; Kundrot, 1996; Gouaux, 
1996) and subsequent optimization. Screening relies on 
uniform, randomized sampling to identify combinations 
of variables that give rise to crystalline lattices. Opti- 
mization adjusts conditions identified by screening to 
improve the crystals. Reaching these two goals involves 
quite different strategies (Carter & Yin, 1994). 

In many cases, in particular those where crystals 
grow by in situ nucleation and a fixed targeted equi- 
librium, optimization becomes a problem in sampling 
the nucleation zone for the best initial combination 
of [crystallizing agent] and [macromolecule] at various 
pH values, temperatures, ligand concentrations and so 
on. In these cases, the local coordinate transformation 
described here can be very helpful. Response surface 
experiments provide a coherent way to study simul- 
taneously relationships between a measurable result, 
such as crystal shape or volume, and a local region of 
several input variables, such as protein concentration, 
crystallizing agent concentration, temperature, and so on, 
that influence that result. They are, however, sensitive 
to the loss of crucial information whenever any of the 
ensemble of experiments fails to produce crystals. 

Relationships in the preceding paragraphs are sum- 
marized for reference in Table 1. The coordinate trans- 
formation amounts to a local orthogonalization of the 
solubility phase diagram with the advantages associated 
with such transformations. They facilitate sampling by 
minimum-prediction variance designs on a rectangular 
grid. Crystal growth experiments properly defined in the 
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Coordinate system 

Solubility diagram 
(Natural coordinates) 
Local orthogonalization 

(Fundamental coordinates) 

Constants 

Table 1. l_x)cal orthogonalization o f  the solubility phase diagram 

x variable Y variable Comments 

m = [crystallizing agent] C r = [macromolecule] 
S, Initial Supersaturation 7~, Reservoir 

Cr Co Improved 
- -  × (m -mT,)  C7. searching/sampling 
Co (m - mr,) properties 

mr,= too- Co=~-exp(-Ksmo) Estimate from 
~s published values of K s 

K s = est. slope of solubility curve A = exp(Cq = y-intercept of solubility curve or solubility curve 

Equivalence point x o = m o = [crystallizing agent]o 

I 
Condition for m r = 0 m o ~- 

^s 

Yo = Cs.o = CoKs. Center designs here for 
optimization. 

A A 
Co = ~- = 7 Special case described 

aseXp(-l) 0"37" °'s by Carter & Yin (1994) 

local orthogonal system will be more efficient because 
few, if any experiments will lie outside the nucleation 
zone. Moreover, since the search directions, S and 7~, 
correspond to physico-chemical  determinants of nucle- 
ation and growth rates, respectively, such experiments 
should do better at locating optimal or stationary points 
for production of crystals for X-ray diffraction. 

This discussion emphasizes the fundamental impor- 
tance of the solubility curve in dictating the course of 
crystal growth and the search for optimal conditions. 
Studies of the solubility diagram involve exhaustive 
equilibrium measurements (Ducruix & Ribs-Kautt, 1990; 
Ri6s-Kautt & Ducruix, 1992) and are therefore pro- 
hibitive in most practical cases. Rough estimates of 
the solubility parameters, fl and Ks., can be obtained 
from plots of two or three values of In Cs versus 
[crystallizing agent]. Sampling of the nucleation zone 
can then be carried out efficiently by response surface 
experiments,  without the need for detailed measurements 
of the solubility curve itself. 

I thank J. Hermans, L. Jiang, M. Hasson, H. Ke, M. 
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